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Determination of the diffusion constant using phase-sensitive measurements

I. M. Vellekoop, P. Lodahl, and A. Lagendijk
Complex Photonic Systems, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
(Received 8 October 2004; published 12 May 2005

We apply a pulsed-light interferometer to measure both the intensity and the phase of light that is transmitted
through a strongly scattering disordered material. From a single set of measurements we obtain the time-
resolved intensity, frequency correlations and statistical phase information simultaneously. We compare several
independent techniques of measuring the diffusion constant for diffuse propagation of light. By comparing
these independent measurements, we obtain experimental proof of the consistency of the diffusion model and
corroborate phase statistics theory.
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[. INTRODUCTION optical phas¢12,13. These types of measurements provide
a direct measurement of the phase of diffusing waves and
Diffusion is one of the most widely encountered phenom-they can give unambiguous proof of the presence of Ander-
ena in physics. The dissolving of sugar in water, the transfeson localization of light.
of heat in a wire and the transport of carriers in a photodiode Here we report our optical experiments that thoroughly
are all examples of diffusion. These processes are all ddest wave-diffusion theory by measuring the amplitude and
scribed by the same diffusion equation. This equation alséhe phase of light transmitted through a strongly scattering,
describes the diffuse transport of waves in disordered scationlocalizing medium. Using the technique of ultrashort
tering materials. An example of a diffusing wave is the transpulse interferometry[12], we have access to the time-
port of light through a cloud or a colloid suspension. Waveresolved intensity, the frequency-resolved intensity and the
diffusion is not limited to light; acoustic waves, microwaves, statistical distribution of the phase delay time. We demon-
quantum particles or even seismic waves behave completebtrate five different ways of extracting the diffusion constant
analogously. from this multitude of experimental data. By comparing the
The last couple of decennia wave diffusion has been ofesults of these five different methods, we test the diffusion
strong interest both from applied as well as fundamentaimodel thoroughly and moreover show how to interpret time-
points of view. In contrast to classical particle diffusion, resolved and frequency-resolved measurements consistently.
wave diffusion is influenced by interference. The recognition In Sec. Il of this paper we present a model for diffusion
that phase plays an important role in wave diffusion formsthrough a slab. From this model we will derive both the
the basis for applications like diffusing wave spectroscopyfrequency-dependent and the time-dependent behavior and
[1] and optical coherence tomograpf8}, which are invalu- identify characteristic parameters that can be extracted from
able tools in the analysis of colloidal systems and in theexperimental data. The setup for measuring both the ampli-
optical imaging of biological tissue. Fundamental interest isude and phase of transmitted light is described in Sec. lll. In
motivated especially by the parallels between light diffusionSec. IV we present our results and devote special attention to
and transport of electrons in mesoscopic systems. These pahe comparison of different techniques to measure the diffu-
allels have been demonstrated by the observation of the ogion constant. Our conclusions are given in Sec. V.
tical equivalents of universal conductance fluctuatip8k
and weak localizatiof4,5].
Multiply scattering media are characterized by the trans- Il. THEORY
port mean free path (the average distance a wave travels
through the medium before becoming diffused the diffu-
sion constanD (the rate at which diffuse waves spread over We consider the diffusion of scalar waves through a slab
the mediun.. For electronsl can be considerably smaller of random material. The slab fills the spacee®<L and is
than the wavelengtih of the electron. Wher(l <\/2m7), infinite in the other directions. In this geometry it is conve-
electrons become localized and the diffusion constant vandient to use Fourier transformed coordinaggs= (., d,) for
ishes[6,7]. This breakdown of diffusion is called Anderson the transverse directions. The slab is illuminated from the left
localization. Anderson localization of microwaves has beer{z<0) by a pulse at timet=0. Since the incident light
observed in quasi-1D systeni8]. Observations at optical quickly loses its directionality due to scattering, it is possible
wavelengthg 9], however, remain under debdtEQ]. to model the incoming light by a diffuse source inside the
In quasi-1D microwave experiments, localization wasmaterial. In this paper we assume isotropic scattering. The
shown to have a distinct effect on the statistical distributionsnclusion of anisotropic scattering in the source function and
of the intensity[8] and the phasgll]. Recently it has be- the description of anisotropic diffusion are tremendous, and
come possible to perform dynamic electric field measurebasically unsolved complications. At this point we use a
ments also in the optical regime, which allow a study of thesource located at a depth~1[14]. Later we will use a more

A. An exact solution to the diffusion equation
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sophisticated source. Under these conditions, the ensembligitted intensity flux, we calculate the forward ﬂu}(Z
averaged energy density of diffuse lighis described by the ——D 47 at the slab surface=L
= , =L,

diffusion equation 15],
Fo(m) = Fz (=)

[6.+D(a? + &® =) ](a,,2) = 82— 2) dBS(@,). (1) (L) =5q,) , (7)
_— (L

In this equatiore=/3/(ll ;) is the absorption coefficient cor- 7 (L)
responding to an absorption mean free phthThe right ~whereF, is given by
hand side of Eq(l) is the source term, wher8(q,) de- _ %
scribes the transverse distribution of the source and has the on(”) = [Zea + 1]e7. (8)
unit of energy. The total energy in the source pulse is given Equation(7) describes the transmission for a source lo-
by S(q, =0). cated at deptt,. A more realistic and more sophisticated

The propagation of light is affected by the boundaries ofmodel assumes an exponential distribution of the source
the slab. It has been shown6,17 that reflections at the |ight. The exponential distribution models how light becomes
surfaces impose mixed boundary conditions on the diffusioryjtfse by being scattered out of the incoming coherent

equation, beam. We adapt Eq7) for the exponential source model by
a,(q,,0:) =1(q,,05t)/Ze, (2a)  convolvingF, with a (normalized exponential source func-
tion,
—dl(q,,L;t)=1(q,,L;1)/ze, (2b) L exp(- zy/1) .
wherez,, andz, are so called extrapolation lengths. In the Fi(7) = fo d20|[1 ~exqi- |_/|)]FZo(77’ZO)
diffusion model, their values are given by ,=2I(1
+Ry »)/3(1-Ry »). The reflection coefficient®, andR, cor- _l-exgly-L/N)1+zyy )
respond to the left and the right boundaries, respectively. - 1-exg-L/IN) 1-1n°

the refractive indices of the dielectrics outside of the slab ang'© obtain the transmltted fI_ux for the exponential source
the effective index of the random mediui7]. rom Eq.(7) by simply replacing=,, by F;. .
We solve the diffusion equatiofEq. (1)] with mixed An important gua_\nnty in the analysis o_f ra.ndo.m media is
boundary conditions analytically in the frequency domain.,the totgl transmission. The total transmission is found by
This solution can conveniently be used to find the field cor\Ntégrating the flux over the whole back surface of the
relation function, the total transmission and the average difS@mple(this corresponds to taking, =0) and integrating
fuse traversal time. We use the same approach 447h over _tlr_ne(Q:(_)). The ensemb_le averaged total transmission
with the exception that we extend the model to allow forCoefficientTy, is therefore defined as
different extrapolation lengths at the two boundaries and use ~ ~
J(0.=0,0=0) _ J(n=a)

These coefficients can be estimated from Fresnel's law usin$/

an exponential distribution of the source intensity. Tt = _ (10)
When Eq.(1) is Laplace transformed with respectttan S, =0 S, =0

expression for the energy densitycan be found directly Neglecting absorption, the equation is evaluated to reproduce
[18], the well known resulf19]

~ ST — _

I = 2L ranlzzl 4 A(p)e + B(7)e?L? 3 | + 2z,

(7.2) 2Dy [e (m)e™+B(n)e™7], (3 T L o(exp- L/IY). (11)
L+Zg+7Zp

where we have definedy=iQ/D+q? +a?. The Laplace
transform parametef) describes the frequency of intensity
oscillations and is much smaller than the optical frequency o
the fieldw. A andB are found from the boundary conditions
(2a) and(2b) after tedious algebra,

This relation betweeil,y, | andL is often used to determine
}he mean free path experimentally by varying

Next, we calculate the electric field correlation function
Ce for the transmitted light. This correlation function con-
tains information about the dynamics of the diffusion pro-

+
Y (2) ~ A7y + 1]e™ cess,
Ay =2 -(EjleZL : (4) )
Y Cu(Q) = (E(w)E"(w + Q)) _J(iQ/D + a? L)
B(y = L2 = AZon+ 1]et%) . E (|E(w)){|E(w+Q)]) T
77 'y_(L)eﬂL ' (12)
where we defined functioy as whereE(w) is the complex field amplitude of the transmitted
Vi(X) = (Zeg 7+ D(Zegm + D7 £ (Zeg 7~ 1) (Zeem — DE ™. light for an incoming field of optical frequency and unit

©) amplitude. The brackets) are used to explicitly denote en-

semble averaging over all possible configurations of the dis-
We now have the exact solution to the diffusion equationordered sample. We obtained the right hand side by assuming
with mixed boundary conditions. In order to find the trans-ergodicity and applying the Wiener-Khinchin theorem.
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The field-field correlation function in Eq12) is the exact ested in the phase of light that propagates through a scatter-
result for diffuse transport through a slab using mixeding medium. An analysis of phase information is comple-
boundary conditions and an exponential source distributionmentary to the analysis of the intensity and provides an
Earlier results(Refs.[17,20) are reproduced by using the independent method of measuring the traversal tinand
simpler sheet source representation of B8).and choosing therefore the diffusion constant. We consider only single
Ze1=Zp OF Ze=Z»p=0. channel phase statistics, which means that we relate phase

We will now turn to the intensity correlation function. and amplitude for one input angle to the phase and amplitude
This function relates two single channel transmission coeffifor a single output angle.
cients. The single channel transmission coefficiénte- Since the diffusion equation only describes the average
scribes transmission from one input angle to one outpuintensity, an extension is needed in order to predict phase
angle. Integrating over all outgoing angles yields the total statistics. The statistical properties of the phase were pre-
transmission coefficient,,.. The intensity correlation func- dicted by van Tiggeleret al. [24] by assuming Gaussian
tion is defined as statistics of the transmitted fie[@3]. This Gaussian assump-

tion is valid when a high number of independent paths con-
(T(w)8T(w + 1)) (13)  tributes to the field at the back surface of the random mate-
(T()XT(w+Q))’ rial. The central limit theorem predicts that in this situation
the real and imaginary parts of the fields are described by a
normal distribution25]. Equivalently, the field amplitude is
Rayleigh distributed and the phagehas a uniform distribu-
C(Q) =|Ce()[2. (14) tion between 0 and2 Neither the distribution of the inten-
sity nor the distribution of the phase contains information
Equation(14) is referred to as th€, approximation and is  apout the diffusion process. Much more interesting is the
valid for diffusive transport in mU|t|p|y Scattering media far probabmty distribution of the group Ve|ocity de|ay t”‘nﬁ(
away from the localization transitiof21]. Equations(12)  =d¢/dw. This probability distribution reflects dynamic
and (14) show that bothCg(€2) and Cy(€2) depend on the properties of the diffusion process and provides a method of
diffusion constant only by means of the reduced frequencyneasuring the diffusion constant. The statistics of the delay
Q/D. Fitting the frequency dependence@fis a commonly  time ¢’ were calculated in Ref24]. For this calculation the
used method to extract the diffusion constant from measuredaussian field statistics were extended to describe the corre-
correlation functions. lations of two fields at nearby frequencies. These correlations

It is instructive to introduce the characteristic traversalare given by the field-field correlation function. The resulting
time for diffusive transmissiom; [22], which is defined as joint Gaussian distribution was subsequently used to calcu-
theda_\verage time it takes a pulse of light to travel through theate the probability distribution of the delay time,
medium,

C(Q) =

where 6T(w) =T(w) —(T(w)). A well known approximation
for the intensity correlation function is given by

~, Q
P(¢)=— - (17)
dt J(t, L)t o) 2[(¢' -1)*+QP*
_ _i E -
= =1 !II'TO Q (15) where ¢'=¢'/{(¢’) and Q is a dimensionless parameter.
f dt J(t,L) (¢') andQ can be calculated from the first and second terms

in the Taylor expansion of the field-field correlation function:
The right hand side was obtained by rewriting the definitionC.=1-ir Q-bQ2+0(Q3), which results in{(¢')=7 and
of 7 in the Laplace domain representation and using EqQ=2b/?-1 [24].

(12). For zero absorption we find In Ref. [24] the correlation function for a system with
L2-612-32,-32, Z4+7 simplified boundary conditions was used to calcutatand
L= =2 1 2, 2L @ o, (16 Q. Here it was shown that without absorptiQrequals 2/5

6D 3LD while with absorptionQ is reduced. However, by carefully

The diffuse traversal time is of fundamental interest since i€X@mining our solution for mixed boundary conditions, Eqg.
relates to the Thouless criterion for localizati@g]. Further- ~ (12), we find thatQ increases above 2/5 when the extrapo-

more, the time scale is of practical interest since measuging '2tion lengths are nonzero.

provides a method of determining the diffusion constant. Our "€ intensity-weighted delay tim#/ is a fundamental
result in Eq.(16) gives corrections of ordegL/D and higher quantity since the sum of this quantity over all incoming and

to the value ofr=L2/6D found by Landaueet al. [22]. outg_oing angles equalg times the de.nsity. of states in the
These corrections are especially relevant whez, <10, ~Medium[24,26. The weighted delay time is defined as

which is the case for thin samples or samples with a high W=Té'. (18)

extrapolation length due to internal reflection. o .
T and ¢’ are statistically dependent variables; for channels

with a low transmission the probability distribution &f is

broader[{27]. Because of the statistical dependency, the sta-
The crucial difference between diffusion of particles andtistics of the weighted delay time cannot be deduced from

wave diffusion is interference. For this reason we are interthe individual probability distributions of and ¢’ and has

B. Phase statistics
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to be calculated on its own. The probability distributionvaf
was calculated in a similar way as the distributiongéfand

is given by[24]:
P(W) = — L exp< :ZIWI_>, (19)
V1+Q sgnW) +V1+Q

where sgn is the signum functidB84] andW= W/{W). The
average weighted delay time was four#df] to relate to the
diffuse traversal time according t&V)=(T) .

The correlation function of the weighted delay tif@g is
defined as

_ WoWw+))
Y W(0))(W(w + Q)

This correlation function was calculated in tkg approxi-
mation [Eq. (14)] using a joint Gaussian distribution that
relates the fields at four frequenciezt]:

2
. { ) —Re(CE(Q)
(21)

2721 9Q
Microwave experiments showed that deviations from@he
approximation(C, and C; correlation$ causeCy, to decay
with frequency much slower than is described by E2{)
[27]. Therefore measurinG,, provides a good way of testing
the validity of theC,; approximation and of looking for signs
of localization.

(20)

FCe(Q)

Culf)) = 902

C. Diffusion in the time domain

Although we found an exact solution to the diffusion

PHYSICAL REVIEW E 71, 056604(2005

We will only calculate the long-time behavior of diffu-
sion. In the long-time limit only the solution with the lowest
g, survives, since, according to E(R2) all other solutions
decay faster. We number this particular solutipn, 6,. Now
we are able to calculate the diffuse flux fior 1/92D,

3(9,,2;1) = = Jo(q, )codquz + )exp(— [aZ, + oZ]Dt),
(23)

Jo can be calculated by contour integrating E@. around

the poles aty=*iq,;. In this article we are interested only in
the exponential decay time of the transmitted flux and there-
fore will not explicitly specify J,. For the total flux(q,

=0) we find an exponential decay with a decay timg

(248

74 =[0G + o?ID,

20

2t
e

where the approximate solution in E@4b) was found by
linearly extrapolatind(q , ,z;t) at the slab boundaridthis is
equivalent to the method of mirror images used in Ref.
[20,29) and Lo=L+z4+Z7, is an effective slab thickness.
The approximate solutiofEg. (24b)] can be used for thick
samplesL>zy,zy).

It is interesting to notice the differences between the de-
cay timery and the diffuse traversal timg. The decay time
74 describes the long-time decay rate of the energy density of
diffuse light in the sample. This decay rate is given by the
slowest term in Eq(22) and does not depend on the distri-
bution of the source intensity. The diffuse traversal time, on
the other hand, has contributions from all terms in Ep)

(24b

equation in the frequency domain, the time-domain behavioand is mainly determined by the short-time transmission. The
is not obvious from Eq(3). In this section we analyze dif- diffuse traversal time does depend on the distribution of the
fusion in the time domain and we present an alternative techsource intensity. Concludingy and =, are time scales that
nique for finding the diffusion constant. The time-resolvedcorrespond to different aspects of diffusion. Therefore, the
transmission can, in principle, be calculated by inverseconsistency of the diffusion model can be tested experimen-
Laplace transforming Eq.7) by means of contour integra- tally by measuring bothy and 7, for a series of samples.
tion [28]. Unfortunately Eq.(7) has an infinite number of
poles, none of which can be found analytically when the , , - ,
extrapolation lengths are nonzero. Using a different approach: APParent nonexponential decay in a realistic experimental
we will show that the diffusion constant can be found by configuration
analyzing only the long-time behavior of the transmitted
flux.

A complete set of solutions to the diffusion equat|ém.
(1)] is given by

lg,6(0.,2;t) = sin(q,z+ Oexp(— [ + a”IDH O (1),
(22)

whereg?=¢? +g2 and@(t) is the Heaviside step function. In
an infinite medium the longitudinal spatial frequergyand : : : : :
phase# can be chosen freely. In a finite slab, however, thereJ get 1S found by integrating over all spatial frequencigs

is an infinite, discrete set of combinations @f and 6 for 1,

which the boundary conditions are fulfilled. For the bound- quL J/Aq. ;L exp - éql"\'g , (29

ary conditions given by Eq$2a) and(2b), permitted values

of g, and the correspondingcan be calculated numerically. The intensity profile at the sample surface is time dependent
Every solution forg, corresponds to two poles in E§7)  according to Eq(22) since modulations with a high spatial
with = %iq,. frequencyq, decay faster than those with a low spatial fre-

In the previous section we found that the total transmitted
flux decays single exponentially in the long-time limit. In an
actual experimental geometry, however, it is not possible to
collect all the transmitted light; only a finite area at the back
surface of the sample can be imaged on the detector. We
model the limited area by means of a Gaussian detection
efficiency with a known waistvy. Furthermore, we assume
that the source lightS(q,), has a Gaussian intensity distri-
bution with waistwg. The total intensity reaching the detector

d

Jgelt) = >
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quency. Since we detect only the flux from a finite area, outong time scales, the parts of the data used in Method | and
detection efficiency is time dependent as well. We define Method Il are nearly independent.

= (W2+w3)/8D, being the characteristic time scale for the ~ Method Ill: In the third method, the intensity correlation
time-dependent detection efficiency, and find the total defunction is extracted from frequency-resolved measurements.
tected flux from Eq(25), Fitting Eq. (14) to the measured correlation function yields
the diffusion constant.
] 1(t)=W§/(8D)J (q,=0:L.1). (26) Method IV: The fourth method relies on the measured
de t+m o optical phase and makes use of the statistics derived for the

phase of diffuse light. When the field obeys Gaussian statis-

This equation shows that a finite detection area imposesrflzs:S (¢') equals the diffuse traversal time Consequently
ponexponenﬂal envelope on the detected transmission & g. (16) can be used to extract the diffusion constant from
increases the detected decay rate. For thicker samples tftﬁz

o : . : e measured phase. Since Method IV only uses phase infor-
additional decay will be more pronounced since the diffuse_ .. : ;
) . I mation and Methods Ill only uses the measured intensity,
decay, as described Iy, is slower. As a result, the diffusion

constant found from a linear fit of li(t) is structurally over- these two methods are fully independent. In the case of
Y Anderson localization, the transmitted field does not obey

estlmat(?d. L:Sﬂﬂgyatzs ﬁ]re;‘%(;totL;r: 526;562{2'265’8?2; Co?aussian statistics. The diffuse traversal time from Methods
responcing to umpti : Y and V is influenced by resonant tunneling through localized

leCt.S.“ght from a Iarge areawg>ws). The consequences of modes and will be significantly higher than the average
omitting this correction can, however, be significant: in our hase delay time measured using Method 1]
experimental configuration the correction results in up to aP Method V- In the last method the diffusioﬁ constant is

25% modlilficatri]on fc.)f'the measured Qiffusi(?n cogstaEnt. extracted from measurements of the weighted delay time.
Natura y. the finite-area correction given by ?26) With (W)/(T)=r we find the diffuse traversal time. As in
equally applies for diffusion in the frequency domain. Unfor- Methods | and IV we calculate the diffusion constant using

tunately, it is inconvenient to apply the correction in the fre- (16). It has been showfid0] that Method V is math-
quency domain analytically. Therefore we use a numerican' :

fast Fourier transform to correct the frequenc —resolveaematically equivalent to Method 1. Therefore, we will only
- . < y use Method V to verify the consistency of our data process-
transmission, Eq(7), and all derived quantities. .

ing.
All together we now have five different methods of mea-
suring the diffusion constant. A comparison of the results of
In Secs. Il A-ll C we presented methods to calculate théhese methods provides a thorough test of the diffusion
frequency correlations, the phase statistics and the transientodel and the phase statistics. Furthermore it enables an
behavior of light diffusing through a slab of randomly scat- unambiguous determination of the diffusion constant.
tering material. Two important time scales were identified:
the diffuse traversal time; and the exponential decay time
Ty We have presented a theoretical framework connecting
In our experiments we will test the consistency of thetime-resolved measurements to phase statistics and fre-
diffusion model quantitatively by extracting the diffusion quency correlations. In order to test this framework, we need
constant from experimental data using five different techto measure both the amplitude and the phase of the multiple
nigques. If the model is valid, we expect all techniques toscattered light over a range of optical frequencies simulta-
yield the same diffusion constant when the boundaries andeously. We perform these measurements using the tech-
the source intensity distribution are accounted for correctlynique of femtosecond pulse interferometry as described in
Furthermore, the methods will only give the same resultRef.[12]. This technique involves an incoherent light source
when coherent transmission, higher order correlations andnd two interferometers. As is explained below, the coher-
Anderson localization do not play a role. Therefore a com-ence time of the light source should be smaller than the rela-
parison of the diffusion constants, measured using differentive delay that can be achieved in the interferometers. In
methods, provides an excellent way of testing our diffusionour case the light source is a mode-locked Ti:sapphire laser
model. (Tsunami, Spectra Physjceperating at 775 nm producing
Method I: In the first method, the diffusion constant is femtosecond pulses with a bandwidth of about 6 nm. The
found from the diffuse traversal timg. The diffuse traversal technique, however, is not limited to pulsed lasers. Any light
time is obtained from time-resolved transmission using thesource with sufficient bandwidth, such as a super lumines-
definition in Eq.(15). After applying the finite-area correc- cent diode or even a conventional lamp, can be used. In our
tion, the diffusion constant is found by means of Eff). experiment we collect light from only a single speckle spot.
Since the transmitted intensity decays exponentially thé&herefore we require a high source intengiégpout 50 mwW
value of r; depends mainly on the transmission at short timeat the sample surfageFurthermore, we need to focus the
scales. beam in order to have large speckle spots. The excellent
Method II: The second method is to measure the decayeam quality and high power favor the use of a mode-locked
time 74 by fitting the long-time decay of the transmitted flux. laser.
Subsequently, Eq2443 is used to find the diffusion constant.  The first of the two interferometer is of the Mach-Zehnder
Since Method Il relies on the time-resolved transmission atype and is shown schematically in Fig. 1. A beamsplitter

E. Five ways of measuring the diffusion constant

Ill. EXPERIMENT
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? Clw) =[S(@)PHy(@)H, (w)E(w), (27)

to FTIR whereS(w) is the spectrum of the incoming puldéy(w) and
H,(w) are the transfer functions of the signal and reference
arm of the Mach-Zehnder interferometer, respectively and
E(w) is the transfer function of the sample that we wish to
extract. In order to find the transfer function of the sample,
the cross correlate is measured with and without the sample
consecutively. Dividing the two functions yields the complex
transfer functiorE(w) containing both the phase and the am-
plitude of the transmitted light. Now the time-resolved field
transmissiorE(t) can in principle be obtained by means of
an inverse Fourier transform. In practice, however, the band-
) ) ] width of the transfer function is limited by the bandwidth of
FIG. 1. Schematic representation of the Mach-Zehnder interfery, o sqyrce pulse. Outside this bandwidth the measured trans-
Ic_>meter used in the setup. The first beamsplit&81) divides the o1 £ nction is dominated by noise, therefore additional fil-
ight between a reference arm and a signal arm. The light in th ering is required before calculatir(t). We use a Cheby-

signal arm is focused on the sample by lens L1. The transmitteshe filter for filterina in order to have a minimum effect of
speckle pattern is collimated by lens L2 and recombined with the v fitering | v inimu

reference beam at beamsplitter BS2. Since the reference arm issétde I%bes andl a maxrllmum tlrlne r(;asr?lutlc;n. b h
few millimeters shorter than the sample arm, the signal pulse does In the experiment the signal and the reference beams have

not overlap the reference pulse temporally. Finally, aperiie to overlap both at the aperture and at the detector in order to

selects an area that is smaller than the typical speckle size arfgUS€ an interference signal. This condition implies that both
polarizer P1 blocks light with a polarization perpendicular to that ofthe direction and the position of the signal beam are fixed
the reference beam in order to increase the signal to noise ratio. THd, as a result, the detection is limited to light emitted from
beam containing the signal pulse and the reference pulse is propa-Small area of the sample surface. Based on the geometry of
gated into a scanning interferometé®TIR). When a sample is the setup we approximate the detection area by a Gaussian
placed in the signal arm, only a fraction of the incident light reachecurve with a waist ofvg=10 um.
the FTIR. In order to balance the interferometer, we use beamsplit- We perform the measurements on samples consisting of a
ters(BS1 and BS2that reflect approximately 4%. layer of rutile TiO, particles with a diameter between
150 nm and 290 nm that are deposited on a substrate of

divides the incoming light between a signal arm and a referfused silica. The titania grains have a refractive index of
ence arm. In the signal arm the light of the laser is focuse@pPproximately 2.8. The extrapolation lengths can be calcu-
on the Samp|e to a waist diameter of approximate|yﬂm lated from the effective refractive inde]gﬁ of the medium
using a lens with a focal length of 6 cm. In order to probe[17]. The effective index can adequately be estimated from
different random configurations of scatterers we illuminateMie theory[31]. For our samples we finde;=1.34 and the
different areas of the sample by translating the sample pe€orresponding extrapolation lengths ag/1=0.69 for the
pendicular to the incoming beam. For every sample positiofeft boundary andz,/I=1.71 for the right boundary.
the transmitted light forms a different volume speckle pat-We measured the total transmission as a function of sample
tern. The speckle is collimated using a second 6 cm lens anidlickness and found a transport mean free pathl of
an area smaller than a typical speckle spot is selected from0.97+0.10um by fitting Eqg.(11) to the data.
the pattern using an aperture with a diameter of 0.8 mm. At Our samples range in thickness between 1.5%h8and
the second beamsplitter the light transmitted through this apl8.0£0.3um. Since the samples are on a substrate that is
erture is combined with the reference pulse yielding a beannuch thicker than the layer of titania, it is necessary to com-
with two temporally separated pulses. pensate for the extra delay in the substrate. In order to accu-
The double-pulsed signal is directed into a Fourier transtately determine the extra pathlength, we direct the light that
form infrared interferomete{FTIR). The FTIR(Biorad FTS-  is reflected from the substrate into the FTIR without reposi-
60A) is a Michelson interferometer and scans the delay timdioning the sample. The thickness of the substrate is deduced
between two copies of the signal. A detector directly behindrom the time delay between the reflections from the front
the FTIR obtains the field autocorrelation function of theand the back of the substrate.
pulse pair as a function of the extra pathlength in the scan- With the setup described in this section we are able to
ning arm of the interferometer. It takes about 40 s to measurg€asure the complex transfer function of random media. Be-
the autocorrelation function. During this time, the specklelow we analyze these transfer functions in the time domain,
pattern has to be stationary and the interferometer stable witie frequency domain and by looking at the phase statistics.
subwavelength accuracy. For this reason only solid samples
can be used. IV. RESULTS
Because of the temporal separation of the signal and ref-
erence pulses, it is possible to isolate the cross corr€ldje
of the signal pulse with the reference pul$5]. In the fre- First we consider the decay in time of a transmitted pulse.
quency domain the cross correlate is given by The inset in Fig. 2 shows the raw data obtained by measuring

A. Time domain measurements
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FIG. 2. Time-resolved intensity transmission for a 1@ FIG. 3. Diffuse traversal time; (triangles pointing upwandand
thick sample consisting of TiQgrains. The observed nonexponen- Scaled decay t'mjed”Z/G (triangles pointing downwaidas a func-
tial decay (solid line) agrees with the finite-area correction, Eq. ion of sample thicknessy is found by fitting the exponential de-
(26), over four decades. Theoretical curves are obtained from EcfY Of J(t) (Method 1); the error bars indicate the values found
(7) and the shape of the filter. The dotted line was corrected for thd"oM fitting the first part of the decafiowest valug and the last
time-dependent detection efficiency due to focusing, usingZgy.  Part of the decayhighest valug The dashed line is the theoretical
with wg=15 um andwy=10 um as estimated from the experimen- value of 7q. The diffuse traversal time is found from the time-
tal configuration and a fitted diffusion constant@&27.0 n?sL. resolved intensity transmission obtained by numerically evaluating

The dashed line is the uncorrected curve for the same diffusiofrd- (15 (Method ). Without taking into account detection effi-
constant. The inset shows an example of the interference signal S{€Ncy: theory(dotted ling predicts that the two time scales con-
the detector as a function of the delay length in the scanning inter€rge for thick samples. When the theory is compensated for the

ferometer. The average intensity transmission is obtained from 5@ffect of a finite detection aregolid line), this convergence is lost,
such measurements performed on different areas of the sample. IN agreement with the experimental data.

the cross correlate at a single position of the sample. Fofing 4 good agreement with theory for the decay time as well

different positions of the sample the transmitted pulse is disyg for the traversal time, both using the same fitted average
torted differently. We extracE(t) for every measurement as diffusion constant oD =255 n? s

described in Sec. Ill and average the corresponding intensi-
ties over 50 sample positions to obtain the normalized trans-
missionJ(t) =(|E(t)|?). Figure 2 shows the time-resolved in-
tensity transmissiod(t) for a 10.1um thick sample. We find
that in the long-time limit)(t) has a nearly exponential decay
for more than four decades. The measurements are fitted wi . )
the theoretical curve obtained from E@) convolved with ~ P€X transfer functionE(w) that was measured using the

the frequency filter that was used in the processing of the ra\Hechnique describe_d in Sec. lll. For all different frequencies
data. We find a good fit for a diffusion constant Bf N the 6 nm bandwidth of the measurements, we calculate the

=27.0 ¢ s°L, taking into account the effect of the limited 9€/ay timed"(“’)zgd’(“’)/qw and the weighted delay time
area of detection. For comparison, the theoretical curve with(@) = (w)|E(0)|". By binning the values ofp’ and W,
out correction for the detected area is also shown in Fig. 2V€ obtain the probability distributions shown in Fig. 4. The

The corrected curve exhibits a significantly faster decay, esdistributions are in good agreement with the predicted func-
pecially fort<2 ps. tional forms from theory, Eq(17) and Eq.(19). This agree-

In order to analyze the decay aft) more quantitatively, Mentis a clear experimental proof that the transmitted light
we extract the diffuse traversal timeand the decay time, 'S described well by.a cwcqlar complex Gaussian distribu-
from the measured flux. In Sec. IV D the diffusion constantlion- For & sample with a thickness of 1Quin, the charac-
will be calculated from these two times scales using Methode"istic paramete@ determining the width of the distribution
| and Il (Sec. Il B respectively. The first time scalg is IS calculated to beQ;O.44. The_ experimental dgta gives
obtained from the time-resolved transmission directly usind@=0-47, corresponding to a slightly lower maximum of
Eq. (15). The second time scale, is extracted from an ex- (#')- The high value ofQ indicates that there is no mea-
ponential fit of the intensity decay. We fit the data betweersurable effect of absorptioriwhich would decreaseQ).
t> 7, and the point where the intensity is dropped below the!\ﬂoreover,Q is c[early Iarger_than the value of 2/5 predlct.ed
noise. It was found that the decay in the first half of thisin Ref. [24]. This observation shows that even for thick
range is always significatly faster than decay in the secong@mplesL~10)) the effect of reflections at the surfaces can-
half, as is predicted by Eq26). In Fig. 3 the decay time; ~ Not be neglected.
is compared to the diffuse traversal time It was shown in We obtain the diffuse traversal time using=(¢")
Sec. Il that the differences between the two time scales ardMethod 1V) and ,=(W) (Method V) and compare these
caused by surface effects and the limited detection area. Wresults to the value found from the time-resolved intensity

B. Phase statistics

An independent way of measuring the diffuse traversal
time is by analyzing the phase information. For different
ositions of the sample we obtain the ph@som the com-
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FIG. 6. Measured field correlation functioBg (real part:
N circles, imaginary part: squagefor a TiO, sample of thickness
\% _1 10.1 um as a function of the frequency differen€ebetween two
§ 10 optical frequencies. The horizontal axis is scaleob-ﬁyas found by
= measuring ¢’). Excellent agreement with theofgolid lineg con-
firms the diffusion model with boundary corrections.
-2
10

As expected, the results from Methods | and V agree very
WHW) well. AIthou_Jgh these methods are equi_valent in theory, the
time-domain data, on which Method | is based, have been
FIG. 4. Probability distributions for the delay tim& (top) and  ltered (see Sec. I), whereas Method V uses the unfiltered
the weighted delay timaV (bottom) as measured in a 104m frequency-domain measurements directly. Since the differ-
thick TiO, sample. The dimensionless paramefecharacterizes €NCES between the values obtained by Methods | and V are
the width of these distributions. We fir@=0.47 from a fit of the ~ Minute, we conclude that the determination7pfs insensi-
theoretical curves given by Eqél7) and (19) (solid lineg. The  tive to frequency domain filtering. In Sec. IV D we will use
average values ap’ andW are used in Methods IV and V, respec- 7; t0 extract the diffusion constant for each sample.
tively, to find the diffusion constant.

measurementéMethod ). Figure 5 showss, as obtained by C. Frequency domain measurements

these three different methods. The values(#f) coincide In Secs. IV A and IV B we presented measurements of the
almost perfectly withr; found from time-resolved analysis. traversal timer; andQ, the characteristic parameter for phase
This agreement again confirms the excellent validity of thestatistics. These two parameters are related to the first and

C, approximation and the theory of phase statistics. second order terms in the Taylor expansion of the field-field
correlation functionCg aroundQ=0. In this section we go a
2 A0 step further and investigate the full frequency correlation
functions of the transmitted light. We investigate the field-
15} e W 3 field correlation function, the intensity correlation function
g = JtXadt and the correlation function of the weighted delay time con-
& 11— theory secutively.
o 3 We first look at the field-field correlation function. This
- 05 function is related to the time-resolved intensity transmission
: by a Fourier transform and provides an alternative way of
studying the propagation of diffuse intensity without having
to worry about possible artefacts introduced by filtering. In
OO 1'0 20 analyzing the time-resolved transmission plotted in Fig. 2 we

L (um) only extracted two parametersg, and r4. Whereas the mea-
sured time-resolved transmission curve showed some minor
FIG. 5. Diffuse traversal time; measured using three different quctqathns compared to theory, Ehe field-field porrelatlon
techniques. Method (squarey calculatesr; from the time-resolved function is perfectly smooth up =15 an.d we find that
intensity. Method IV(triangles obtainsz; from the measured opti- the theo_retlcal cu_rve_matches the experimental data very
cal phase alone, whereas Method(dircles uses the intensity- Well, @s is shownin Fig. 6. ,
weighted phase information. The excellent agreement indicates that [N order to test theC, approximation[Eq. (14)] directly,
the transmitted field is described by Gaussian distribution. The solidvé €xamine the intensity correlation functi@)((2). The
line are the theoretical values for a diffusion constantf presence of long range,) and infinite ranggC;) correla-
=255nfs ™ tions would show up by comparing the intensity correlation
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FIG. 7. Measured correlation functions for the intensiy() .
(diamond$, and the weighted delay tim€,((}) (circles, in a 0 10 20
10.1 um thick TiO, sample. The solid lines are ti® approxima-
tions for both correlation functions. Except for some spurious os- 40
cillations, agreement with theory is evident.
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17z
o
function to theC; contribution. In our experiment, however, §, 20
we find a good agreement to tl® theory as is shown in o)
Fig. 7. At O7r;=8 a slight deviation of unknown origin is

found in the correlation function. Surprisingly this deviation 0 1'0 20

was absent in the field-field correlation functi@a. We de- L (um)

termine the diffusion constant by fitting the intensity corre-

lation function and find a diffusion constant of 27+3 &' FIG. 8. Measured diffusion constant for samples of different

for a 10.1um thick sample. . . thicknesses obtained in five different ways. The top figure shows
Finally, we present the correlation function for the the giffusion constant obtained from the diffuse traversal time
weighted delay timeCy(Q) in Fig. 7. Apart from the same we measured the traversal time directly in the time domain
deviations that were found in the intensity correlation func-(Method |, squares by extracting the average of the delay time
tion, the agreement with E¢R1) is evident. This observation (¢’) (Method IV, circle, and the weighted delay timéw)
provides the first experimental confirmation of the correla-(Method V, triangles Error bars are only presented fap'), but
tion function of the weighted delay time at optical frequen-the errors in the two other values are comparable. The diffusion
cies. constants in the middle figure are calculated from the decay tjme
which is obtained by fitting the decay of the transmitted flux
D. The diffusion constant (Method 1. The bottom plot displays the diffusion constants ob-

Altogether we have presented five different methods o ained from fitting the intensity correlation functigMethod III).
xcept for the two thinnest samples, the consistency of the five

determining the diffusion constant experimentally. Methods I S

. . - .. different measurement methods is evident.
and Il use the measured time-resolved intensity transmission
to find two time scalesry and , from which the diffusion The error bars in Fig. 8 are derived from the uncertainty
constant can be calculated. Subsequently, we showedsthatin the sample thickness and the uncertainty in determining
can be obtained from phase statistics in two different wayshe actual valuér, 74 or the curve fit toC,) that was used to
by analyzing the delay timéVethod IV) and the weighted calculate the diffusion constant. For thinner samples we find
delay time(Method V). Finally, we measured the diffusion larger error bars since the uncertainty in the thickness is rela-
constant by fitting the intensity correlation functiiethod  tively large. For the three methods that are based on the
[11). The results of these five methods are summarized in Figraversal timer; we find that the uncertainty iD decreases
8 for nine samples of different thickness. We find that allwith increasing sample thickness. The determination of the
different methods yield the same diffusion constant, withindecay timery, on the other hand, becomes increasingly more
the experimental accuracy, for a given sample. This observanaccurate because of the nonexponential decay of the trans-
tion is an experimental proof of the consistency of the diffu-mitted intensity.
sion model that was presented in Sec. Il. An average diffu- The diffusion constants obtained by fitting the decay of
sion constant ofD=25.5+1.0 st is found; individual the transmitted intensityMethod 1) appear to be slightly
samples with different thickness have slightly different val-lower for thinner samples. This behavior is consistent with
ues of the diffusion constant ranging from 1§&i' to  earlier observation§32]. It should be noted, however, that
28 n?s™L. Since these variations in the diffusion constantsthe decay time in these samples is comparable to the time-
are reproduced for all methods, we conclude that the scattefomain resolution. Measurements based on phase informa-
is a result of the varying sample structure and that it is notion (which are not limited by the time resolutipshow no
the result of a measurement error. thickness dependence of the diffusion constant.
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For the thinnest sample we find different diffusion con- measurement§Method ) or from phase measurements
stants depending on which method we use. The difference idMethods IV and V. These three methods have in common
most apparent when comparing Methods | and V to Methodhat they provide a direct, unambiguous way of associating a
IV. Both the direct time-domain measurementpfMethod time scale to the transmission of light. This makes them
I) and the average weighted delay tithdethod V) are lower  equally suited for the regimes of ballistic transmission, dif-
than expected, resulting in significantly higher values of thefusion and localization. In fact, a comparison of the values
measured diffusion constant. The difference in observed difebtained using Methods IV and V can distinguish between
fusion constants is a clear indication that the transmitted fielthese regime$11]. Method | has the additional advantage
does not have a Gaussian distribution. The discrepancy béhat it does not require phase information. Therefore this
tween the different values of; is consistent with an in- method is still applicable in situations where pulsed interfer-
creased transmission at short times. Therefore this observametry cannot be used to measure the phase, for example, in
tion suggests an influence of coherent transmission or singlde analysis of colloidal suspensions that are nonstationary
scattering. Especially, it shows that shorter traversal timesamples. Methods Il and Il use a curve fit of, respectively,
are associated with higher intensities, since the low values dhe time-resolved intensity and the frequency correlation
7 are not reproduced in the unweighted delay time measurdtnction of the intensity. Such techniques that rely on fitting
ments(Method V). of the experimental data are less accurate than direct calcu-
lation of the diffusion constant and explicitly use the diffu-
sion model. Therefore these two methods are the least attrac-
tive of the five methods.

Pulse interferometric measurements allow a sensitive de- For our samples consisting of Tj(particles we found
termination of the complex transfer function of a randomthat the results of the five complementary techniques agree
medium. This transfer function can be used to calculate th@lmost perfectly for samples thicker than twice the mean free
time-resolved intensity, the frequency-resolved intensity andath. Our observations are strong experimental proof of the
notably the phase of diffuse light. These three complemenvalidity of the diffusion model and the phase statistics theory.
tary sets of data are obtained in a single measurement. Finally we measured the correlation function of the

In Sec. Il we presented a consistent theoretical frameworkveighted delay time. To our knowledge, this is the first re-
to interpret the experimental data. The framework is builtPort of such a measurement at optical wavelengths. The ex-
around an exact solution to the diffusion equation withPerimental data agree very well with the measured intensity
mixed boundary conditions. Our solution is a generalizeccorrelation function and the predictions from phase statistics
version of the result presented in REE7] and uses a more theory. These measurements demonstrate that it is possible to
accurate description of the source intensity distribution. Arecord phase-related correlation functions at optical wave-
new result is the nonexponential envelope that is imposed of¢ngths.
the detected flux due to a finite detection area. This envelope Our analysis clearly shows that care has to be taken in
contributes to the detected intensity decay and should bi@cluding proper boundary conditions and correcting for the
taken into account when extracting the diffusion constant. detection efficiency, even for samples much thicker than the

By analyzing the diffusion theory both in the time domain mean free path. Provided these effects are taken into account
and in the frequency domain we have identified two relevanProperly, the model used to describe the propagation of light
time scales. The first is the diffuse traversal time The through a random medium is consistent for all different
traversal time is the natural time scale in the analysis ofmf€thods of analysis. Our experiment demonstrates the ver-
phase statistics and correlation functions. The second timgatility and reliability of pulse-interferometric measurements
scale is the decay timey associated with the exponential and validates the use of phase-sensitive quantities for the
decay of diffuse intensity. These two times are affected difidentification of long range correlations and possibly the lo-
ferently by the boundary conditions and the finite area ofcalization of light.
detection.

We measured the diffusion constant using five different ACKNOWLEDGMENTS
methods, which allowed a comparison of time domain mea- We thank Boris Bret and Allard Mosk for stimulating dis-
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